

JOINT STRIKE FIGHTER AUTONOMIC LOGISTICS PROGNOSTICS & HEALTH MANAGEMENT

Al Bodnar

Joint Strike Fighter Program Office

VISION

BE THE MODEL ACQUISITION PROGRAM FOR JOINT SERVICE AND INTERNATIONAL COOPERATION

DEVELOP AND PRODUCE AN AFFORDABLE NEXT GENERATION STRIKE FIGHTER WEAPON SYSTEM AND SUSTAIN IT WORLDWIDE

AFFORDABILITY CHALLENGE

Note: O&S (Operations & Support) = Whole Life Support

OVERVIEW

JSF Background

AutoLog Approach

Summary

CONCEPT DEMONSTRATION PHASE

LOCKHEED MARTIN MULTI-SERVICE DESIGN

INTERCHANGEABILITY

Lockheed Martin Concept

- P&W F135 & GEAE/RR F136 Engines Will Be Physically & Functionally Interchangeable
- All JSF Aircraft Will Be Able to Use Any JSF Engine
- Common JSF Autonomic Logistics System Interfaces

STATUS OF INTERNATIONAL COOPERATIVE AGREEMENTS

Cooperative Partners

Level I - UK Memorandum of Understanding (MOU) Signed 17 January 2001

Level II – Italy MOU Signed 24 June 2002

Level III - Turkey MOU Signed 11 July 2002

Canada MOU Signed 7 February 2002

Denmark MOU Signed 28 May 2002

Norway MOU Signed 20 June 2002

Anticipated Signings

Australia (Estimate 31 October 2002)

AUTONOMIC LOGISTICS VISION

A comprehensive logistics support environment for the JSF which has these key features:

- A highly reliable aircraft which encompasses Prognostics & Health Management
- A technologically enabled warfighter
- A Joint Distributed Information System
- A logistics infrastructure that is sufficiently responsive to support requirements

AUTONOMIC LOGISTICS CONOPS

AUTONOMIC LOGISTICS TECHNOLOGIE

JSF Paintless Aircraft

Joint Distributed information system (JDIS)

CACE

Prognostics & Health Management (PHM)

Reliability & Maintainability

Supportable LO

Training

MANAGEMENT

Why Did We Choose This Technology?

- Enable Autonomic Logistics
- Enhance Flight Safety
 - Single Engine Aircraft, Must Have Dual Engine Reliability
- Increase Sortie Generation Rate
- Eliminate False Alarms
- Eliminate CND's and RTOK's
- Reduce Life Cycle Costs
- Maximize PHM Benefit from Limited Specialized Sensors
- Take Max Advantage of the "Smart" Digital Aircraft

Natural Evolution of Legacy Diagnostic Capabilities Coupled with the Added Functions, Capabilities, and Benefits offered by New Technologies

PROGNOSTICS AND HEALTH MANAGEMENT

What is it?

- Diagnostics is the process of determining the state of a component to perform its function(s)
- Prognostics is predictive diagnostics which includes determining the remaining life or time span of proper operation of a component
- Health Management is the capability to make appropriate decisions about maintenance actions based on diagnostics/prognostics information, available resources and operational demand.

PHM TECHNOLOGIES EVALUATED DURING CD

Ingested Debris Monitoring System (IDMS)

Engine Distress Monitoring System (EDMS) Stewart Hughes

Piezoceramic Patch Crack Detection (PZT) **UTRC**

Beacon-Based Exception Analysis for Maintenance (BEAM) JPL.

Ltd

MEMS Sensors

ood Technology

9 Oil Debris

nitor (ODM)

ade Vibration

eter (BVM8X)

coustic FOD

Electrostatic Bearing Monitor (EBM)

ExperTech

Oil Condition Monitor (OCM)

Electrostatic Oil Debris Monitor (EODM)

PHM ARCHITECTURE

A Comprehensive Approach to Prognostics & Health Management

PHM IS DESIGNED INTO THE AIR VEHICLE

- Reflected in ORD and JMS Requirements
- Reaches across the entire airframe
 - Mission Systems
 - FD/FI In flight reconfiguration
 - Structures
 - Intelligent Load Monitoring
 - Propulsion
 - Dual engine safety with single engine
 - VMS
 - Electronics Prognostics
 - Subsystems
 - Hydraulics
 - Fuel System
 - Electric Power System
 - APU
 - Drive Shafts
 - Etc...

SUMMARY

PHM is Critical to JSF Autonomic Logistics

- Many Challenges Ahead
- JSF has the Opportunity to Change the Way Weapon Systems are Supported

